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A St abilizcd Sparse-Matrix U-D Square-Root lmplmmntation
of a Large-State Extcnckd Kalman Filter

Dale llog~s’1”,  Michael Ghill””l’, and Christian Kcppcnnet

1. introduction and motivation
ThC fu]l nonlinear Kalman  filter (KI;) sequential algorithm is, ill theory, well-suited to the four-dimensional data

assimilation problem in large-scale atmospheric and oceanic problems (C]hil  eZ al. 1981, Ghil and Malanotte-I<i  z?.oli
199 1). Soon after Kalman’s (1 960) seminal paper, estimation practitioner’s and numerical analysts became aware of
nunlcrica]  difficulties inherent in the cliscrctc  KF recursion cquatio])s. A number of early researchers (Bellantoni  and
IIodge 1967, Schmi(it  ct al. 1968, 1.eondcs 1970) showed that the KF algorithm can be very sensitive to computer
round off and [hat results may cease to bc meaningful as time advances-– even in cioubk precision. A frequent symptom is
that an error covariancc  matrix loses its positive definiteness; this is frequently aggravated by true numerical ill-
conditioning which cannot be improved by a sitnple  resealing of units. Filter “divergence” (Schlec d al. 1967), i.e.,
numerical results that wildly contradict predicted analytic behavior, encompass at least  3 types of divergence, due to: (1)
the effects of computer roundoff, (2) the presence of nonlinearitics,  and (3) ti]e use of incorrect a priori statistics and an
crrcmcous  dynamic model.

These conlputatimal  shortcomings of the original Kl; algori[hln  have motivatcci  alternative formulations of the
optimal sequential estimator. Still,  many rcccnt KF papers secm oblivious 10 the conventional discrete KI:’s numerical
stability problems, or, at the most, consider tilcse to be a computatio]lal  nuisance. Wi]cn implementing the extended Kl:
(llKI;) for a noniincar,  l>ri]~~itive.-cqtlatior~  mo(icl with realistic forcing ami topography, this issue cannot bc ignored: it is a
challenging part of the overall problc]n. The causes of filter-divergence types (1) :ind (2) play a prominent role in the
design of the Kalman-tyim  estimation algorithms discusseci  below.

A square-root formulation of the KF has inherently better  stability anti numc.r  ical  accuracy than the conventional
Kalman formulation (Jazwinski  1970, Bierman  1977, Kerr 1990). Square-root filters arc aigcbraicaliy  equivalent to the
K F, but invo]  vc fundamcnt  ally different computational methods. A complete suite  of square-root type KF recursions was
developed primarily for interplanetary spacecraft navigation (Dyer aild McRcynokk  1969, Thornton and Bicrman  1976,
Bicrman 1977) and yields numerically robus[  KP implementations. ‘1’his  is, in part, duc to the fact that using square-root
matrix factors implicitly prcscrvcs  symmetry and assures nonncgatitc  eigenvalucs  for the computed covariance;  it also
reduces the condition number of the matrices that must be inverted.

Square-root algoriti]ms  arc, nonetheless, not very wi(icly used, bccausc  c)f the m roneous perception that factorization
techniques are too complicate(i  compared to the conventional KF, usc too much computer storage, and involve too much
computation. This perception is due ill large part: (1) to an incomplete understanding of the square-root algorithms that
arc heavily dcpcndcnt on advanced numerical analysis (Golub and Wn Loan 1989, 1,awson  and Hanson 1974), and (2) on
tile use of incfticicnt  computer iillplctllctltatic)rls.

Tile optimality  of Kalman-type. sequential estimators, whether c<mvcntional  or square-root, comes at the price of an
enormous incrcasc  in the number of operations for a fuli EKF i[llplcl]lcrltatioll.  I}or models with n discrete variables, the
cost of advancing the error covariances  onc time step with the classical Kalman formalism is about )1 times that of
integrating the model itself. Since codes simulating or predicting lar~e-scale  flows currcntiy  have 105–106 variables, KP
implementations have so far been mostly experimental, and in low-resolution mocic.ls  with up to a few thousand variables
(Jiang and Ghii  1993, and references therein). To mitigate this computational barriel,  a number of banded approximations
to tile KF (Parrish and Cohn 1985: PC hcrcaftcr;  To[iling  and Ghil 1990) have been explored. These approximations to
the conventional Kli arc bascci  on retaining only ti]ose elements of tile covariancc matrix which differ significantly from
zero. Since covarianccs tend to mro with increasing distance (Bal{:ovind  C( al. 1983), it is feasible to calculate- -and
store-- only those ciiagonals  of the forecast-error covari:ince  matrix that contain significant correlations, rather than the
entire matrix. The information contained in this grcatiy rc(iuced  set of ciiagcm:iis  is tiler]  a good approximation to that
contained in the full covariancc matrix. Tile.se authors also exploited the block-sparseness of the state transition matrix
ti]at  arises frm tile finite-ciiffcrcnce schcmc;  the result was a cornputationally  feasible KF for a iincar two-ciimcnsional
(2-lJ) shal]ow-water systcm. Unfortunately- within the conventional K]: forn]ulation--  this banded approximation
induces a distinct loss of positive-dcfhitcncss in the propar,atcd  covariance  rnatlix after a few assimilation steps, and the
method  tilcreforc  faiis.

To achieve a non-(iivcrging  liK1:  that is computationaily  feasible for large geophysical-fiow models ami is as close to
optimal as i>ossible,  wc have extcncied  PC’S banded aigorithm,  retaining  the computation-saving device of diagonal-wise
matrix operations on sparse banded matrices, but witi~in  a square-root framework. A less restrictive form of the ban(ic[i
approximation was usc(i, to immit  the. lJ-IJ factorization.
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2. The U-]) square-root filter
The type of square-mot KF wc implcmcntcd,  the so-called [l--l)  filter (Bimman 1977), involves a triangular

factorization of the covariancc matrix P which requires no actual squale-root  calculations, thus enhancing efficiency. The
LJ-D filter makes use of the matrix decomposition

1’= UDU7’, (1)
where 1) and [J arc, rcspcctivcly,  diagonal and unitary upper triangular (H x N) matrices of the form

l)= dia,g[dl,  d2,..., dnl , (] =

Ix xxx
Olx x.x
Ool x.x

10 0 0 1 ’  ” . :
(2a,b)

[
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This algorithm is of square-root Iypc since Ul) “2 is a covariancc  matrix square root. ‘1 ‘he numerical stability and accuracy
of this algorithm--which relates the U-D observation update cycle to the numerically stable Givens  orthogonal
transformation method- has been established by Gentleman (1 973). Mo]covcr,  the U-D algorithm approaches the
conventional KF in both timing and storage requirements if coded efficiently, e.g., exploiting the m-o  lower-triangular
portion of the U factor in Ilq. (2b) by storing and performing computat  ions on nonmro  matrix entries only.

U-D factorization is applied to both the covariance propagation in time (forecast) and data update (assimilation) in
Kalman’s  sequential algorithm, so that all clcmcnts  of the discrete KF equaticms- including the gain matrix--are
expressed in terms of these factors. Wc outline here only the [J-II forln of the covariancc matrix propagation step, since it
is the dominant computational burden in the Kl~. The K?? covariancc propagation equation,
Malanottc-Rizzoli  (1 991), is

in the notation of Ghil  and

l&f = Y:. ~l;:~ Yfj -~ Q.] , (3)

where l~f and ]~’~1 arc the forecast covariance.  at time step k and the analysis covariancc at step k-1, and Y’ and Q are the
state-transition and process-noise (model error) matrices. Using F/q. (1), Ilq. (3) can be written as

U@;tJ~7 = Y;_, U:_, D:_,U::l Y:!l -+ Ak. ,(2;. ,A~. , , (4)

with A defined so that Q’ is diagonal. ‘1’hc rip,ht-hand  side can be factored as }’ZYr, where

Y=[Yf_,Uf.l  : Ak.,
] ~ ‘=[r$’%ill ~ (5a,b)

This factorization has the same general form as RI.  (1), but not the same. dimensions, and Y is no longer upper
triangular. The cycle is conq>leted  by transforming Y and Z to the desired (n x n) unitary upper triangular and diagonal
form, using a weighted Gran~-Schn~idt  orthogonaliz.ation  proce.durr (GoILIb and Van I.oan 1989, Sec. 5.2.8) on Yi, the
rows of Y, that generates a set of n Z-ollhogonal vectors, hi. The elements of the desired D/ and U/ arc then given by

{

~1 =, (Y~z[)j)/(~jj>  ‘:’1,2, ”’”,j  -1,djj =l)~Zllj  , j=l,..., n ;
IJ

0, i>j,
(6a,b)

which comp]ctcs  the propagation fronl ~~~1 and U;l  to ~~[ and ~J/.
A measure of the potential for computational difficulty is the ctmdition  number, K(l)), defined as ~lllaxianlirl,  where

a ,llax  and Illlill  arc the maximum and minimum eigcnvalucs of tlm symmnric,  positive-definite matrix P. If K(P) is
large---on the order of 10’”, where r is the number of significant digits in a computer word-–computational difficulties are
certain to arise. Conciitioning is improved by using estimation equations tha[ usc tl~c scp]arc  roots of P rather than P itself,
since for the square-root matrix K(U]J1’2) = 1 orfl.

To introduce sparseness into the discrctc  estimation equations, wc approximate the full P by the symmetric banded

~x...x
Xxx... x
:Xxx... x 0Xxxxx... x
Xxxx x.x,. ... ..’,, .,..

10 Xx.. xxx
Xx’xx

Xx .,.x
x x . .

(7)
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where the width  of the central band in terms of ncmmro  ciia~cmals  is 2P+ 1; p= ~Nlon(2b+l)> with NIOI1  the nlln]bcrof
longitudinal grids poir~ts, al~(ll~tllc  bal~dwicltl~ paral~~ctcr givc]lby  thc]~ul~~bcl-  ofgl"id  pc}irlts-away  fro]~la t~:isc]~oii~t  in
each coordinate direction-—over which non~,cro  covarianccs will be. calculatcci.  only  the nonmro  diagonals of l;j arc
stored. 1 ‘or 1’11 to bc decomposable into U-D form, it cannot preserve any zero diagonals imbcddcd  in the central han(i.
Thus, our central diagonal band is a priori completely nonmro,  wllilc PC’S was interspersed with sub-bancls  of zero
diagonals, duc to block-bandcdncss. This kcy difference allows us to decompose. the sparse approximation ]}i into (J-1)
square-root factors: if 1}{ has the form (7), then lj, = lJ1)JNJ117; where UII is Llnit  ww triawular  and ~~ is diwonal,  if and
only if UIJ has the form

U1{ =

/J
~–——&  ——>

lxxx
lxxx
lxxx o

‘ .  ’ . ” . ’  . “ .. . . .

Ix X’”. x

o Ix””. x
‘. ”..;

l x
1

(8)

The banded covariance approximation (7, 8) is more computationally  expensive (i.e., with more nonzero  elements
needing to bc stored and computed) than that of PC, but it allows  as to retain the LJ-11 factorized form, which, in turn,
yields a near-optimal discrctc  filter that doesn’t diverge. The new U-D square-root filter still takes full advan(agc of the
induced sparseness by not storing-– or doing computations o]]—-thc m -~–l mro diagonals in the upper-right portion of the
{111 factor (8).

3. ‘he nonlinear shallow-water model
The model used in this study is a 2-1) nonlinear shallow-water m)dcl,  which dcscribcs  divergent barotropic  motion in

a hydrostatic fluid with a free surface, confined to a beta-plane channel ccntercd  at 45”N (Todling and Ghil, 1994). The
discrctiz.ation  is based on a second-order accurate, cluaclratic-energy -conserving finite-difference schcmc  (e.g.,
Granmeltvedt  1969), using a modified Euler-backward method in time. The prognostic variables are the zonal and
meridional velocities, u and v, ancl gcopotcntial  height h at each gridpoint.  ‘I’he boundary conditions are very simple: v is
set to zero at the meridional boundaries of the computational domain, and u and iJ are independent of longitude along the
same boundaries. All fields arc periodic in the z,onal direction.

For estimation purposes, the dcpemdent  variables arc organized into a!~ orde.rcd  state vector of length n, where n is
three times the number of grid points. The ncmzero diagonals of the sparse n X n state transition matrix Y’ arc computed
analytically with a tangent-linear approximation, This matrix is used in advancing @ as in Flq. (3), while the state itself is
advanced by the full nonlinear equations of motion.

4. Numerical results
4.1 u-l) filter lest

Wc have run several assimilation experiments on a 17 x 24 grid with boundaries at 25°N and 65”N (5000 km
mcridionally),  so that AT = 1178 km and Ay = 312.5 km, with an integration step size of Af = 15 rein, and with
n = 3 x 17 x 24 = 1224 state variables. This model siz,c is comparable to advanced Iincar KF ill~plc~]]cl~tatioI~s  (Jiang and
Ghil  1993, Miller C( al. 1994, Toclling and Ghil 1994), but the present method shoulcl  permit, once tested, nNJch Iargcr
applications. The height h of the model’s free surface is givem initially, and the initial data for the velocity components u
and v are calculated from the gcostrophic relation. The initial state is a westerly Jet with north-south perturbatioJls  of
different wavelengths and amplitudes along its zonal  axis. Synthetic observations are taken every 3 hours, and arc
processed using the LJ-11 square-root EK1: of Sec. 2 with the bandwidth parameter b ranging from 2 to 4 and full (i.e., no
approximation, ~= n = 1224). A diagonal model-error (process-noise) matrix ~? with nonzero  variances for all variables
was used in all the cxpcrimcnts,

For the relatively small model size used in these cxpcrimcnts,  the banded approximation yields modest computational
savings. For example, for b = 3, the number of nonzcro ciiagonals  of the cova.lriance  matrix that must bc stored and
calculated is 504 out of a total of n = 1224. ‘J’his yields a savings of about 1/2 in the. floating-point operation count, since
the centrally located diagonals retained are longer than the ones omitted. lIowcver,  for a more realistically sized
atmospheric or oceanic model, the savings can be more dramatic: for a global model with a 2° x 2° grid using a
bandwidth parameter b = 4, only 1()% of the diagonals of the full covariancc  matrix arc retained and calculated with the
approximation. As an accuracy check of the banctcci  U-1) fiiter,  wc note that the resulting state estimates ancl ti]cir
associntcd c,rror-covariancc  estimates- obtained using b := 2, 3, an[i 4–- ciici not (iiffcr in any significant way from those
obtaincci  using tile fuli lJ-IJ filter.
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On the other hand, a check of the U-IJ filter’s overall performance relative to ttlat of a conventional IiK}’ (CKI’
hcrcaf(cr)  yielclcd  dramatic results. F,very U-D filter cxpcrimnt  was succcssflll in that the filter performed in a
numerically stable, ncm-divergent manner; the same cases run with the CKI;-  on the sanlc CRAY YMP using the same
prccisim-invariably  failed duc to filter divergence after a few forecast-update steps. ‘J’hc failures were all similar: each
would terminate due to a sudden rapid incrcasc  in the norm of the computed l~f matrix, culminating in computer overflow
within one day after initial time. It is interesting that compal i son C.K17 runs lcplicalc.d  almost exactly the full U-l) filter
results (b = n) during the first few assimilation steps; soon, however, ]esults would begin to drift apart duc to the accrual
of numerical errors in the unstable CKF computations, followed rapidly by the C. K17’s  blow-up.

4.2 Stcite  aIId covoriat~cc c.vti})iatcs
Wc show the results of an “identical-twin” cxperimnt  where , starting with an initial “guess” wc’(lo) of the “true”

initial statcw((to),  wc usc noisy observationsof  the “true’’evolution  w’(t),  ~> l., to obtain a U-II flltercstimate  w(’(~) that
converges to the true field W[(t) as assimilation procccds.  ‘1’hc initial error Wc’(to)-w’(lo)  was generated with a
geost  rophicall  y balanced pcrlurbat  ion that has approximate ]oot-l~leall-sql]are  (R MS) values of Au = 3.8 nl/s and Av =
1.29 n]/s for the vclocitics,  and Ah = 370 m for the geopotential  height (Fig. 1), with the RMS taken over all grid points.
The observing pattern used was highly i(iealizcd and the observations rather phmtiful in this preliminary experiment:
observations ~f ~{, v, and II were made c-very 12 At = 3 hours at all grid points.
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l:igure 1. The 3-day evolution of the RMS assimilation mor taken over all the grid points of
the beta-plane channel. The estimate error for the wind components u and v and
the gcopotential  height h are shown individually at each forecast step. There arc 96
forecast steps pcr day, and the fields al-e updated every 12 At (3 hours).

Observations were generated by adding random, uncor[elatcd Gaussian noise to the true trajectory, with standarcl
deviations 01, = 2 nl/s,  o}, = 0.75 m/s, and all = 75 m. The observatio]ls  were pmccsscd  sequentially at each assimilation
time (Ghil and Malanottc-Rizzoli  1991, p. 185, and references there), with each row of the observation matrix 11
containing a single entry equal to one. and the rest zeros. Model e. I rors were also assumed to bc uncorrclatcd,  with
standard deviations of 10 m/s, 5 otis,  and 200 m pcr half-day for zi, v, and A, respectively. The initial ana]ysis-error
covariancc matrix, l;a, was taken to be diagonal, with standard cieviat ions given by 2S rids, 8 n~/s, ancl 1000 m for M, v,
and h. Figure  1 shows the. RM,S error results of a 3-day assimilation run at each forec:ist  and analysis step; the RMS errors

n,f ~, _ ~,t(l) bY sllllllllill~  ~Jvcr :1]]  grid points. ~“hc estimated st:~t~in the u, v, and }~ tlclds  are conlJmtccl  f[’om (IIC vector w (
is seen to convcrgc  to lhc true state in all components.

Figure 2 depicts the evolution of the estimated error in ~i. Eacli  panel in the figure stiows the state-estimate error :it a
specific forecast time over the rectangular beta-channel region witl]  a gray-scale range depicting errors in the wind
component ranging from -4 nl/s  (black) to + 4 nds (white). ‘1’he  ima~,cs  progress in time from 6 hours to 48 hours past
initial time, ancl show the estimated state converging over the entire sp:itial  domain to the true trajcctc)ry.

A closer inspection of };ig. 1 reveals a manifestation of a problem that will be. at once: (1) ncw to many Kli
prac{itioncrs;  (2) cxp]ainablc  only with acivanccd  numerical analysis concepts; (3) difficult, but not impossible, to SOIVC;
:irld----asidc from the computational burdm-  (4) probably at the heall  of what will bc. the. major difficulty in applying the
EKF to data assimilation for highly rcso]vcd  geophysical flow modc]s.  IT] Fig. ], at the update time itself, the state
estimation error itlcrcases,  rather tball dccrcascs.  This problem arises frolil  the fiict that errors in the observational
residual-the diffcrcncc bctwccn  an observed value ancl the. model’s prediction of that value- arc transformc(i  by the
Kalman inversion process, even in the squ:irc-mot  form, into I:irge  errors  in the. state c.sti]nate along those directions in the
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‘lime evolution of the estimated state  error in [~; gray }cale. 1 iach image depicts
[hc crmr over the rcc[angular  beta-channel re ~,]on which constitutes the domain
of the cm-layer shallow-water model used. fr ‘hc 17 par:il]cls  run 25° to 65° N,
and the 24 meridians run from 0° to 360° E.

r?-dimensional phase space that correspond to cigcnvcctors  of l~f associated with large eig,cnvalues. A heuristic
cxplanatirm  of this  fact in the context of lar~e-scale  geophysical, md-latitucle flows, is that the divergence of the flow
field is much smaller that the curl. Ilcnce, errors  in observed divqwcc  will affect the assimilated result much more
seriously than errors of similar size in the curl. This problem is ubic]uitous in ILKF estimates of large  nonlinear systems
that (1) require Iincarizcd  approximations, and (2) possess covariance n]atriccs- and hence [heir inverses, the systcm
information; matrices- that are ill-conditioned.

lligarc 3 shows the evolution in time of the spectrum: each curve is the ]]lagilitllclc-ordered set of n=] 224 eigenvalues
computed from the forecast-error covariancc matrix that results at each of 6 forecast slcps,  namely steps 1, 2, 3, 4, 13, and
37 following initial lime 10, with the updates occurring after steps 13, 25, 37, etc. A significant incrcasc,  of almost 106, in
the conctition  number is evident in the early filtering stages; this ilnplics  a sc.~rious  numerical stability problem in the
makin~. The systcm [hat must bc (at least implicitly) invcrlcd  to Iwocccd wit]) tllc Kl: process is seen to bc ranidly
reachilig  the st&c  that stanclard inversion mctho-ds  will not work.
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Ma nitudc-ordered spcch-um of the 12.24 x 1224 fo]~ciist-cr~ol covariancc matrix at 6
?clif crcnt time steps of the assimilation. Curve 1 (bolcl) shows the. cigcnvalucs  for the

3-tiercct  initial a priori unccrtain[y  for each of [he 3 va[-iab]cs  I{, u, and /). Ch]rvcs 2, 3,
and 4 arc the ci~cnvalucs  for forecast steps 2? 3, 4, inlmcdiate.ly  following the initial
time. Chrvc 5 results at the last forecast step ]lnmcdia[cly prcccding  the first analysis
time. Chlrvc 6 shows the cigcnvalucs prcce(ilng the third analysis time (step 37).
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5. Summary
We have shown that a square-mot i]llJ~lcl]]er~tatioll  of the IIKI: for ii fairly realistic shallow-water mocicl is stable. This

can ovcrcomc the stability problems of the CK1~ cnco~lntcred  in space-navigation proi~lcm  many other engineering areas
(Kerr 1990, and references there), by livcnsen  (1992) in an ocean Inocld,  and in the present atmospheric model.

Using LJ-D factori~aticm,  a modified version of Parrish and COhI1’S  (1985) banded  approximation is stable. LJn(il the
CK1i begins to diverge, it agrees quite well with the banded U-D squa~c-root  f]lter.

A square-root EKF has the best chance of dealing successfully with the problems posed by ill-conditioning of large
error-covariancc matrices. The difficulties still encountered with the ]mesent  U-D implementation will bc surmounted in
the future by changing to a square-root information filter  (SR1l;:  Hicrnlan 1977).
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